A SHORT SYNTHESIS OF A KEY LEUKOTRIENE B4 SYNTHON

Lester S. Mills and Peter C. North*

Chemistry Division, Glaxo Group Research Ltd., Ware Hertfordshire SG12 ODJ, England.

Abstract: The enantioselective epoxidation of the diene $\underline{5}$ is reported as the key step in a short synthesis of the LTB $_4$ synthon $\underline{1}$.

Leukotriene B $_{4}$ (LTB $_{4}$), a recently characterised metabolite of arachidonic acid, is thought to be an important mediator in inflammatory and allergic diseases because of its potent chemotactic and smooth muscle contractile actions 1,2 . To date, four syntheses of LTB $_{4}$ have been reported $^{2-5}$, and three of these have utilised the Wittig coupling of either $_{1}$ or $_{2}$ with the aldehyde $_{3}$ as a means of constructing the LTB $_{4}$ skeleton. Thus, $_{1}$ has been prepared in fourteen steps from D-(+)-mannose whilst $_{2}$ has been prepared in thirteen steps from 2-deoxy-D-ribose and in fourteen steps from L-arabinose $_{4}$. We now wish to report a six step synthesis of $_{1}$ starting from the diyne $_{2}$ which is easily prepared on a large (1 Mole) scale in three steps from propargyl alcohol $_{6}$.

Catalytic hydrogenation of $\frac{\mu}{2}$ (Pd on BaSO₄ in pyridine) cleanly gave the $\frac{Z}{2}$, Z-diene $\frac{5}{2}$ (70%) which was subjected to an enantioselective epoxidation 8 (1.1 equiv. each of Ti(OPr i) $_{ll}$ and natural (+)-dimethyl tartrate, 2 equiv. of $\mathrm{Bu^{t}0_{2}H}$, $\mathrm{CH_{2}Cl_{2}}$, -25°, 18h) to give the epoxide $\underline{6}$ [[α] $_0^{65}$ -10.20 (C=1.5, CHCl $_3$)] in 71% yield and 94% enantiomeric excess 9 . Collins oxidation of $\underline{6}$ (CrO₃, pyridine, CH₂Cl₂, 23°, 0.5h) afforded the aldehyde 7 (77%) which was elaborated essentially as described previously2. Thus, reaction of 7 with allylidenetriphenylphosphorane (1.1 equiv., THF, -78°, 1.5h) gave the conjugated diene $\underline{8}$ [67%, \underline{z} : \underline{E} =4:1, $[\alpha]_{D}^{24}$ +40.6° (C=1.5, CHCl₃), lit. 2 [α] 6 5 +40.40 (C=3.5, CHCl₃)] which was treated with dry HBr¹⁰ to give exclusively the labile $\underline{E},\underline{E}$ -conjugated diene 9. Without purification, 9 was treated with triphenylphosphine (3 equiv., CH₂Cl₂, 23°, 24h) to give, after concentration and trituration with ether, the salt 1 as a white hygroscopic solid in 58% yield from 8. The reaction of $\underline{1}$ with $\underline{3}^{11}$ afforded the corresponding Wittig coupled product [29%, $6\underline{z}$: $6\underline{E}$ =7:3, [α] $_D^{25}$ +152.6° (C=0.85, CHCl₃), lit.² [α]⁶⁵ +164.4° (C=1.4, CHCl₃)] which on hydrolysis (NaOH/H₂O/ MeOH) afforded a 7:3 mixture of LTB $_{4}$ and 6E-LTB $_{4}$ together with a trace of the corresponding C-12 epimers 12 which inevitably arise from the intermediate $\underline{6}$ (94%e.e.). Preparative RP- ${
m HPLC}^{12}$ effected a very clean separation of this mixture to give LTB4 with >99% purity and with characteristic biological activity.

References and notes

- 1. E.J. Goetzel, New Eng.J.Med., 1980, 303, 822.
- 2. E.J. Corey, A. Marfat, G. Goto and F. Brion, J.Amer.Chem.Soc., 1980, 102, 7984.
- 3. Y. Guindon, R. Zamboni, C-K. Lau and J. Rokach, Tetrahedron Letters, 1982, 23, 739.
- 4. R. Zamboni and J. Rokach, Tetrahedron Letters, 1982, 23, 2631.
- 5. E.J. Corey, A. Marfat, J. Munroe, K.S. Kim, P.B. Hopkins and F. Brion, <u>Tetrahedron</u> Letters, 1981, 22, 1077.
- Prepared by (a) C-alkylation of di-lithio propargyl alcohol with 1-bromopentane see
 D.E. Ames, A.N. Covell and T.G. Goodburn, <u>J.Chem.Soc.</u>, 1963, 5889. (b) PBr₃ bromination.
 (c) Reaction with the di-Grignard complex of propargyl alcohol see J.M. Osbond, P.G.
 Philpot and J.C. Wickens, <u>J.Chem.Soc.</u>, 1961, 2779.
- 7. All stable intermediates were purified and characterised by microanalysis, 250 MHz PMR, IR and, where applicable, UV spectroscopy.
- 8. T. Katsuki and K.B. Sharpless, J.Amer.Chem.Soc., 1980, 102, 5974.
- 9. As determined by 250 MHz PMR using Eu(hfbc)3 chiral shift reagent.
- 10. HBr gas (ex cylinder) was bubbled into dry CH_2Cl_2 over #A-molecular sieves for 30 sec. This solution (conc. unknown) was added to $\underline{8}$ in CH_2Cl_2 at 23° until TLC [silica, cyclohexane-ether (5:1)] indicated conversion of $\underline{8}$ (Rf 0.84) into 9 (Rf 0.47).
- 11. Prepared essentially as described in ref. 5 except the epoxybenzoate (intermediate $\underline{6}$ in ref. 5) was treated with $\mathrm{HIO_4.2H_2O}$ in ether (23°, 24h) to give $\underline{3}$ [[α] $_{\mathrm{D}}^{23}$ -34.4° (C = 1.3, CHCl₃)] directly in 67% yield.
- 12. HPLC retention times were 9.5min (LTB₄), 7.8min (6<u>E</u>-LTB₄), 8.3min (12-epi-LTB₄) and 8.5min (12-epi-6<u>E</u>-LTB₄) using a 0.5 x 20cm Spherisorb 5μ, C₁₈ column eluted (2ml/min) with MeOH:H₂O:AcOH (65:35:0.01), UV detection 270nm.

(Received in UK 17 November 1982)